液化氣流量計信號的特點(diǎn)及稀疏傅里葉變換的理論分析
點(diǎn)擊次數(shù):1726 發(fā)布時間:2021-01-08 06:43:58
摘要:傳統(tǒng)的渦街信號處理方法主要是用傅里葉變換,由于傳統(tǒng)的傅里葉變換的時間復(fù)雜度與其分析的信號長度成正比,采樣點(diǎn)數(shù)越多其頻譜譜線越接近理想狀態(tài),但需要較大的運(yùn)算時間。 針對這個問題,提出了采用稀疏傅里葉變換分析渦街流量信號的方法,利用實(shí)驗(yàn)數(shù)據(jù)進(jìn)行 Matlab 仿真,驗(yàn)證了該方法的性能優(yōu)于傳統(tǒng)的方法,不僅提高了對強(qiáng)噪聲的抗干擾能力還加快了計算速度。
近半個世紀(jì)以來, 液化氣流量計因其測量精度高、 無可動部件、測量精度高等優(yōu)點(diǎn)得到了迅猛的發(fā)展。 液化氣流量計主要測量部件為壓電傳感器,其易受到噪聲的干擾,如管道振動、電磁干擾、流體的低頻擺動等。 在含有噪聲的信號的中提取出有用的渦街信號, 國內(nèi)外眾多研究學(xué)者對渦街信號的處理方式主要有FFT 的周期圖法、互相關(guān)法、自適應(yīng)陷波濾波法、小波分析法和數(shù)字跟蹤濾波方法等 。 但是這些方法對于含有強(qiáng)噪聲的信號測量精度不高或錯誤,即噪聲頻率在渦街信號頻率范圍內(nèi),而噪聲的幅值高于渦街信號的幅值。 本文提出一種基于稀疏傅里葉變換的渦街信號分析方法, 該方法不僅具有很高的實(shí)時性而且對含有強(qiáng)噪聲的信號也能夠保證測量的準(zhǔn)確性。
1 稀疏傅里葉變換的理論分析
快速傅里葉變換( Fast Fourier Transform , FFT )的時間復(fù)雜度為 O ( nlogn ),與離散傅里葉變換( Discrete Fourier Trans-form , DFT )的復(fù)雜度 O ( N 2 )相比,運(yùn)算速度發(fā)生了質(zhì)的飛躍,尤其是隨著采樣點(diǎn)數(shù) N 的增加這種優(yōu)勢就越加明顯 。但是隨著時代的發(fā)展,需要實(shí)時處理的信號越來越多,即便是 FFT 對于這樣的需求也難以滿足。 傳統(tǒng)的 FFT 只考慮到了信號的長度 N 需要為 2 的整數(shù)次冪,并未考慮到信號的自身的特性,如稀疏性。
在實(shí)際生活中常見的信號的傅里葉系數(shù)只有小部分是我們感興趣的,其大部分都是可以忽略的,如圖像和語音信號 。 針對這樣的信號能否找到一種更加快速的算法來計算其傅里葉變換,MIT的團(tuán)隊(duì)給出了答案 。 該團(tuán)隊(duì)提出了稀疏傅里葉變換( Sparse Fourier Transform , SFT ), 該算法利用了信號頻域的稀疏性,先對信號進(jìn)行分“桶”,將長的 DFT 運(yùn)算變?yōu)檩^短的運(yùn)算,再根據(jù)一定的規(guī)則重構(gòu)了信號的頻譜,其運(yùn)算速度為 FFT 的十倍甚至百倍 。
稀疏傅里葉變換使用的先決條件就是分析的信號具有稀疏性,設(shè) x ( n )是長度為 N 點(diǎn)的有限長序列,則該序列的 N 點(diǎn)離散傅里葉變換逆變換為:
其中 Ω N 表示集合 邀0 , 1 ,……, N-1妖 。 只有 K ( K塏N )個非零的傅里葉系數(shù),只通過信號 x ( n )的部分采樣值來確定這 K 非零傅里葉系數(shù)與位置。
1.1 頻域降采樣
參數(shù) B 整除 N ,若想要以等間隔 N/B 對信號頻域進(jìn)行降采樣,即:
混疊后頻域譜線由 N 減少到 B ,信號點(diǎn)數(shù)成倍較少,這正是SFT 算法復(fù)雜度為亞線性的關(guān)鍵原因之一。
1.2 稀疏傅里葉變換運(yùn)算步驟
稀疏傅里葉變換包括頻譜重排、加窗函數(shù)、頻域降采樣、定位、估值與迭代等運(yùn)算過程。
1.2.1 頻譜重排
頻譜重排的目的是使各大值點(diǎn)均勻分布, 分桶時大頻點(diǎn)不要分到同一個桶中,當(dāng)兩個或兩個以上大值點(diǎn)在同一桶中時,無法求解取大值點(diǎn)的頻率和位置。p ( n ) =x { mod [ σ · n , N ]}, nε [ 1 , N ] ( 4 )式中 σ 為一個隨機(jī)數(shù),且為奇數(shù),并滿足 mod [ σ×σ -1 , N ] =1 ,這就保證了 σ 與 N 互為質(zhì)數(shù), σ -1 為 σ 的模逆算子。 根據(jù)傅里葉變換可知上式中的 p ( n ), x ( n )滿足:P ( k ) =X { mod [ σ-1 · k , N ]}, σ , kε [ 1 , N ] ( 5 )通過式( 4 )、( 5 )知道信號時域上的重排也會導(dǎo)致頻譜信號位置上發(fā)生變換。
1.2.2 窗函數(shù)濾波器
為了保證算法的效率且防止頻譜泄漏,需要設(shè)計一個在時域和頻域能量都集中的濾波器, 根據(jù)文獻(xiàn)該濾波器的為 sinc 窗函數(shù)與高斯窗函數(shù)的卷積,該窗函數(shù)具有過渡帶陡峭、通帶平滑等特點(diǎn)。
1.2.3 哈希映射
定義一個映射區(qū)間 Ω N →Ω B 的哈希函數(shù): h σ ( k ) =round ( σ ·k · N/B ), round 表示四舍五入, 將 Ω N 中每一個點(diǎn)都映射到 Ω B中。 定義偏移量: o σ ( k ) =σ · k-h(huán) σ ( k )·( N/B );定義集合 J ,集合 J包含了 Z ( k 中 K 個較大幅值的坐標(biāo) k ;通過哈希反映射得到 I r ,即 I r =邀kε [ 0 , N-1 ] |h σ ( k ) εJ妖 ,*后從中取出 K 個大值點(diǎn)對原信號的頻率估計。
1.2.4 循環(huán)投票
對于每一個 kεI , X‘( k ) =Z ( h σ ( k ) W Nτk/G ( o σ ( k ))頻率估計值。 每一次定位循環(huán)得到一個坐標(biāo)集合 I r ,在 L=O ( log 2 N )次循環(huán)中,對任意坐標(biāo) kεI=I 1 U …… υI r ,若出現(xiàn)次數(shù)大于 L/2 ,則將其歸入集合 I‘ 中,并認(rèn)為集合 I‘ 包含所有目標(biāo)頻點(diǎn)坐標(biāo)。 對每一個kεI‘ ,取 L 次循環(huán)得到 X ( k )的中值作為*終的頻率值,即:X ( k ) =median ( 邀X r ( k ) |rε邀1 ,……, L)
2 渦街信號的特點(diǎn)
在一定范圍內(nèi),流體流速 V 與渦街頻率 f 有以下關(guān)系:
f=πK 1 VD2/4 ( 6 )
其中 K 1 為儀表系數(shù), D 為管道直徑。在管道口徑 D 不變,流體密度不變的情況下,渦街傳感器的輸出幅值與 f 2 成正比,具體表達(dá)形式可以根據(jù)實(shí)驗(yàn)測出。本文以 50mm 口徑氣體實(shí)驗(yàn)為例,數(shù)據(jù)如表 1 所示:
從表 1 的氣體流量的實(shí)際幅值和擬合幅值的誤差可以看出,渦街信號的幅值在理論值附近波動,且波動的范圍一定,則幅頻關(guān)系更一般的形式表達(dá)如下:
其中 c 為系數(shù), δ 為相對誤差限, 其示意圖如圖 2 所示,圖中實(shí)線為幅頻關(guān)系的理論擬合曲線, 而虛線為幅值波動的閾值曲線。根據(jù)實(shí)驗(yàn)的數(shù)據(jù),渦街信號幅值波動的相對誤差為 ±10% 。
3 實(shí)驗(yàn)仿真
本實(shí)驗(yàn)采用基于對管道振動信號進(jìn)行分析, 其采樣點(diǎn)數(shù)為2048 ,采用稀疏傅里葉變換對數(shù)據(jù)進(jìn)行頻譜分析。 如圖 3 所示。
圖 4 是用 FFT 算法對渦街時域信號分析后得到的頻譜圖,其中渦街信號頻率為 141.8Hz ,振動噪聲信號頻率為 25.34Hz 。從圖中可以看出,信號是稀疏的,稀疏度 K=2 。
從圖 5 可以看出 SFT 算法能夠很好恢復(fù),對渦街信號的頻率恢復(fù)沒有誤差,而幅值的誤差不超過 1% ,這對含有強(qiáng)振動噪聲的渦街信號精確測量至關(guān)重要;圖 6 是經(jīng) SFT 頻譜分析所得到的數(shù)據(jù)通過幅頻特性曲線來辨別是噪聲信號還是渦街信號。通過幅頻關(guān)系的信號處理方法可以從含有振動的混合信號中識別渦街信號,從而達(dá)到提高液化氣流量計抗振動性能的目的。
現(xiàn)在分析 SFT 算法的優(yōu)越性。 基于哈希映射的稀疏傅里葉變換算法的時間復(fù)雜度為
由前文可知 FFT 算法時間復(fù)雜度為 O ( Nlog 2 N )。 隨著信號長度 N 的增長,兩者的時間復(fù)雜度也會發(fā)生變化。 采用時間復(fù)雜度的數(shù)量級的比值來刻畫這種變化:
當(dāng) K=2 ,SFT 算法與 FFT 算法的時間復(fù)雜度的比值關(guān)系如圖 7 所示。處理的 ROBLOCAM-CN 算法進(jìn)行對比,其估計誤差率 eer(t)對比效果如圖 4 所示。從對比結(jié)果中可以看到,若不對通信噪聲進(jìn)行處理則各自由節(jié)點(diǎn)和墻的位置始終存在偏差 , 而 在ROBLOCAM-CN 算法下所有的自由節(jié)點(diǎn)與墻都迅速收斂至各自的精確位置,驗(yàn)證了本算法的有效性和魯棒性。 各節(jié)點(diǎn)的收斂軌跡和*終的定位與環(huán)境構(gòu)建效果如圖 5 所示。
5 結(jié)束語
本文提出了一種噪聲情形下新穎的室內(nèi)定位與環(huán)境構(gòu)建算法,該算法不需要無線傳感器網(wǎng)絡(luò)中的節(jié)點(diǎn)配備激光傳感模塊,只需要通過節(jié)點(diǎn)間的射頻信號即可實(shí)現(xiàn)對周圍環(huán)境的感知,為室內(nèi)定位與環(huán)境構(gòu)建技術(shù)提供了一種經(jīng)濟(jì)且可靠的解決方案。
近半個世紀(jì)以來, 液化氣流量計因其測量精度高、 無可動部件、測量精度高等優(yōu)點(diǎn)得到了迅猛的發(fā)展。 液化氣流量計主要測量部件為壓電傳感器,其易受到噪聲的干擾,如管道振動、電磁干擾、流體的低頻擺動等。 在含有噪聲的信號的中提取出有用的渦街信號, 國內(nèi)外眾多研究學(xué)者對渦街信號的處理方式主要有FFT 的周期圖法、互相關(guān)法、自適應(yīng)陷波濾波法、小波分析法和數(shù)字跟蹤濾波方法等 。 但是這些方法對于含有強(qiáng)噪聲的信號測量精度不高或錯誤,即噪聲頻率在渦街信號頻率范圍內(nèi),而噪聲的幅值高于渦街信號的幅值。 本文提出一種基于稀疏傅里葉變換的渦街信號分析方法, 該方法不僅具有很高的實(shí)時性而且對含有強(qiáng)噪聲的信號也能夠保證測量的準(zhǔn)確性。
1 稀疏傅里葉變換的理論分析
快速傅里葉變換( Fast Fourier Transform , FFT )的時間復(fù)雜度為 O ( nlogn ),與離散傅里葉變換( Discrete Fourier Trans-form , DFT )的復(fù)雜度 O ( N 2 )相比,運(yùn)算速度發(fā)生了質(zhì)的飛躍,尤其是隨著采樣點(diǎn)數(shù) N 的增加這種優(yōu)勢就越加明顯 。但是隨著時代的發(fā)展,需要實(shí)時處理的信號越來越多,即便是 FFT 對于這樣的需求也難以滿足。 傳統(tǒng)的 FFT 只考慮到了信號的長度 N 需要為 2 的整數(shù)次冪,并未考慮到信號的自身的特性,如稀疏性。
在實(shí)際生活中常見的信號的傅里葉系數(shù)只有小部分是我們感興趣的,其大部分都是可以忽略的,如圖像和語音信號 。 針對這樣的信號能否找到一種更加快速的算法來計算其傅里葉變換,MIT的團(tuán)隊(duì)給出了答案 。 該團(tuán)隊(duì)提出了稀疏傅里葉變換( Sparse Fourier Transform , SFT ), 該算法利用了信號頻域的稀疏性,先對信號進(jìn)行分“桶”,將長的 DFT 運(yùn)算變?yōu)檩^短的運(yùn)算,再根據(jù)一定的規(guī)則重構(gòu)了信號的頻譜,其運(yùn)算速度為 FFT 的十倍甚至百倍 。
稀疏傅里葉變換使用的先決條件就是分析的信號具有稀疏性,設(shè) x ( n )是長度為 N 點(diǎn)的有限長序列,則該序列的 N 點(diǎn)離散傅里葉變換逆變換為:
其中 Ω N 表示集合 邀0 , 1 ,……, N-1妖 。 只有 K ( K塏N )個非零的傅里葉系數(shù),只通過信號 x ( n )的部分采樣值來確定這 K 非零傅里葉系數(shù)與位置。
1.1 頻域降采樣
參數(shù) B 整除 N ,若想要以等間隔 N/B 對信號頻域進(jìn)行降采樣,即:
混疊后頻域譜線由 N 減少到 B ,信號點(diǎn)數(shù)成倍較少,這正是SFT 算法復(fù)雜度為亞線性的關(guān)鍵原因之一。
1.2 稀疏傅里葉變換運(yùn)算步驟
稀疏傅里葉變換包括頻譜重排、加窗函數(shù)、頻域降采樣、定位、估值與迭代等運(yùn)算過程。
1.2.1 頻譜重排
頻譜重排的目的是使各大值點(diǎn)均勻分布, 分桶時大頻點(diǎn)不要分到同一個桶中,當(dāng)兩個或兩個以上大值點(diǎn)在同一桶中時,無法求解取大值點(diǎn)的頻率和位置。p ( n ) =x { mod [ σ · n , N ]}, nε [ 1 , N ] ( 4 )式中 σ 為一個隨機(jī)數(shù),且為奇數(shù),并滿足 mod [ σ×σ -1 , N ] =1 ,這就保證了 σ 與 N 互為質(zhì)數(shù), σ -1 為 σ 的模逆算子。 根據(jù)傅里葉變換可知上式中的 p ( n ), x ( n )滿足:P ( k ) =X { mod [ σ-1 · k , N ]}, σ , kε [ 1 , N ] ( 5 )通過式( 4 )、( 5 )知道信號時域上的重排也會導(dǎo)致頻譜信號位置上發(fā)生變換。
1.2.2 窗函數(shù)濾波器
為了保證算法的效率且防止頻譜泄漏,需要設(shè)計一個在時域和頻域能量都集中的濾波器, 根據(jù)文獻(xiàn)該濾波器的為 sinc 窗函數(shù)與高斯窗函數(shù)的卷積,該窗函數(shù)具有過渡帶陡峭、通帶平滑等特點(diǎn)。
1.2.3 哈希映射
定義一個映射區(qū)間 Ω N →Ω B 的哈希函數(shù): h σ ( k ) =round ( σ ·k · N/B ), round 表示四舍五入, 將 Ω N 中每一個點(diǎn)都映射到 Ω B中。 定義偏移量: o σ ( k ) =σ · k-h(huán) σ ( k )·( N/B );定義集合 J ,集合 J包含了 Z ( k 中 K 個較大幅值的坐標(biāo) k ;通過哈希反映射得到 I r ,即 I r =邀kε [ 0 , N-1 ] |h σ ( k ) εJ妖 ,*后從中取出 K 個大值點(diǎn)對原信號的頻率估計。
1.2.4 循環(huán)投票
對于每一個 kεI , X‘( k ) =Z ( h σ ( k ) W Nτk/G ( o σ ( k ))頻率估計值。 每一次定位循環(huán)得到一個坐標(biāo)集合 I r ,在 L=O ( log 2 N )次循環(huán)中,對任意坐標(biāo) kεI=I 1 U …… υI r ,若出現(xiàn)次數(shù)大于 L/2 ,則將其歸入集合 I‘ 中,并認(rèn)為集合 I‘ 包含所有目標(biāo)頻點(diǎn)坐標(biāo)。 對每一個kεI‘ ,取 L 次循環(huán)得到 X ( k )的中值作為*終的頻率值,即:X ( k ) =median ( 邀X r ( k ) |rε邀1 ,……, L)
2 渦街信號的特點(diǎn)
在一定范圍內(nèi),流體流速 V 與渦街頻率 f 有以下關(guān)系:
f=πK 1 VD2/4 ( 6 )
其中 K 1 為儀表系數(shù), D 為管道直徑。在管道口徑 D 不變,流體密度不變的情況下,渦街傳感器的輸出幅值與 f 2 成正比,具體表達(dá)形式可以根據(jù)實(shí)驗(yàn)測出。本文以 50mm 口徑氣體實(shí)驗(yàn)為例,數(shù)據(jù)如表 1 所示:
從表 1 的氣體流量的實(shí)際幅值和擬合幅值的誤差可以看出,渦街信號的幅值在理論值附近波動,且波動的范圍一定,則幅頻關(guān)系更一般的形式表達(dá)如下:
其中 c 為系數(shù), δ 為相對誤差限, 其示意圖如圖 2 所示,圖中實(shí)線為幅頻關(guān)系的理論擬合曲線, 而虛線為幅值波動的閾值曲線。根據(jù)實(shí)驗(yàn)的數(shù)據(jù),渦街信號幅值波動的相對誤差為 ±10% 。
3 實(shí)驗(yàn)仿真
本實(shí)驗(yàn)采用基于對管道振動信號進(jìn)行分析, 其采樣點(diǎn)數(shù)為2048 ,采用稀疏傅里葉變換對數(shù)據(jù)進(jìn)行頻譜分析。 如圖 3 所示。
圖 4 是用 FFT 算法對渦街時域信號分析后得到的頻譜圖,其中渦街信號頻率為 141.8Hz ,振動噪聲信號頻率為 25.34Hz 。從圖中可以看出,信號是稀疏的,稀疏度 K=2 。
從圖 5 可以看出 SFT 算法能夠很好恢復(fù),對渦街信號的頻率恢復(fù)沒有誤差,而幅值的誤差不超過 1% ,這對含有強(qiáng)振動噪聲的渦街信號精確測量至關(guān)重要;圖 6 是經(jīng) SFT 頻譜分析所得到的數(shù)據(jù)通過幅頻特性曲線來辨別是噪聲信號還是渦街信號。通過幅頻關(guān)系的信號處理方法可以從含有振動的混合信號中識別渦街信號,從而達(dá)到提高液化氣流量計抗振動性能的目的。
現(xiàn)在分析 SFT 算法的優(yōu)越性。 基于哈希映射的稀疏傅里葉變換算法的時間復(fù)雜度為
由前文可知 FFT 算法時間復(fù)雜度為 O ( Nlog 2 N )。 隨著信號長度 N 的增長,兩者的時間復(fù)雜度也會發(fā)生變化。 采用時間復(fù)雜度的數(shù)量級的比值來刻畫這種變化:
當(dāng) K=2 ,SFT 算法與 FFT 算法的時間復(fù)雜度的比值關(guān)系如圖 7 所示。處理的 ROBLOCAM-CN 算法進(jìn)行對比,其估計誤差率 eer(t)對比效果如圖 4 所示。從對比結(jié)果中可以看到,若不對通信噪聲進(jìn)行處理則各自由節(jié)點(diǎn)和墻的位置始終存在偏差 , 而 在ROBLOCAM-CN 算法下所有的自由節(jié)點(diǎn)與墻都迅速收斂至各自的精確位置,驗(yàn)證了本算法的有效性和魯棒性。 各節(jié)點(diǎn)的收斂軌跡和*終的定位與環(huán)境構(gòu)建效果如圖 5 所示。
5 結(jié)束語
本文提出了一種噪聲情形下新穎的室內(nèi)定位與環(huán)境構(gòu)建算法,該算法不需要無線傳感器網(wǎng)絡(luò)中的節(jié)點(diǎn)配備激光傳感模塊,只需要通過節(jié)點(diǎn)間的射頻信號即可實(shí)現(xiàn)對周圍環(huán)境的感知,為室內(nèi)定位與環(huán)境構(gòu)建技術(shù)提供了一種經(jīng)濟(jì)且可靠的解決方案。