高頻勵(lì)磁管道流量計(jì)的測(cè)量原理與設(shè)計(jì)
點(diǎn)擊次數(shù):1995 發(fā)布時(shí)間:2021-01-03 08:52:15
摘要:針對(duì)傳統(tǒng)管道流量計(jì)在測(cè)量漿液流量時(shí)存在精度低、傳感器輸出波動(dòng)大等缺點(diǎn),設(shè)計(jì)了一種基于 DSP 的高頻勵(lì)磁管道流量計(jì)。該管道流量計(jì)采用高低壓切換勵(lì)磁方式,通過(guò)引入電流旁路來(lái)改進(jìn)變送器的勵(lì)磁電路,提高勵(lì)磁頻率。利用具有高輸入阻抗的差分放大電路放大傳感器輸出信號(hào),提高信號(hào)的信噪比,保證提取信號(hào)的精確度。實(shí)際測(cè)試結(jié)果表明:系統(tǒng)測(cè)量精度高,對(duì)小流速階段測(cè)量準(zhǔn)確度明顯改善,測(cè)量誤差不超過(guò) 5%。
引言
流量檢測(cè)在工業(yè)生產(chǎn)、廢液監(jiān)測(cè)以及管道運(yùn)輸?shù)阮I(lǐng)域有著廣泛的應(yīng)用,根據(jù)測(cè)量原理不同,流量計(jì)可以大致分為力學(xué)、電學(xué)、聲學(xué)、熱學(xué)、光學(xué)等類型,其中管道流量計(jì)是依據(jù)電學(xué)原理研制而成,管道流量計(jì)與其他流量計(jì)相比,具有結(jié)構(gòu)簡(jiǎn)單、測(cè)量精度高、穩(wěn)定性好等特點(diǎn)。但管道流量計(jì)在測(cè)量低流速、低導(dǎo)電率液體時(shí)存在精度不高等缺點(diǎn),為了克服這個(gè)缺點(diǎn),本文研制了一種基于 DSP 的高頻勵(lì)磁管道流量計(jì),在勵(lì)磁方式上選用旁路勵(lì)磁電路與恒流控制電路相結(jié)合的方式,提高了勵(lì)磁頻率以及能量的利用效率。本文選用高性能 DSP TMS320F28335 來(lái)采集處理傳感器輸出的信號(hào),顯著提高了系統(tǒng)測(cè)量時(shí)的響應(yīng)速度,將流量計(jì)算結(jié)果通過(guò) LCD 屏的方式實(shí)時(shí)顯示,系統(tǒng)具有體積小、便攜式以及測(cè)量精度高等優(yōu)點(diǎn)。
1 高頻勵(lì)磁管道流量計(jì)測(cè)量原理
管道流量計(jì)根據(jù)電磁感應(yīng)定律的原理來(lái)測(cè)量導(dǎo)電液體的流量,測(cè)量導(dǎo)電液體的傳感器中繞有線圈,通過(guò)給線圈通電,當(dāng)液體流過(guò)線圈時(shí)就會(huì)切割磁感線,此時(shí)在線圈的兩端會(huì)產(chǎn)生感應(yīng)電動(dòng)勢(shì) e,根據(jù)電磁學(xué)中右手法則可得:
e=BLv (1)
式中:B 為傳感器線圈產(chǎn)生的磁場(chǎng)強(qiáng)度;L 為傳感器線圈的長(zhǎng)度;v 為液體在傳感器中流動(dòng)的速度。
由流量計(jì)算公式可得:
式中 S 為傳感器管道的截面積。由式(1)可知,當(dāng) B 和 L 已知時(shí),只要測(cè)得 e 就可以反推出 v;由式(2)可知,當(dāng)測(cè)得 v 時(shí)就能計(jì)算出 Q。
2 高頻勵(lì)磁管道流量計(jì)硬件設(shè)計(jì)
高頻勵(lì)磁管道流量計(jì)由傳感器、高頻勵(lì)磁電路、信號(hào)處理電路等組成,其中高頻勵(lì)磁電路決定著傳感器磁場(chǎng)的強(qiáng)弱,勵(lì)磁電路的穩(wěn)定性以及精確性決定著系統(tǒng)檢測(cè)的準(zhǔn)確性以及穩(wěn)定性。DSP 系統(tǒng)控制勵(lì)磁電路激勵(lì)傳感器線圈,當(dāng)線圈中有導(dǎo)電液體流過(guò)時(shí),其切割磁感線并在傳感器兩端的線圈上產(chǎn)生感應(yīng)電動(dòng)勢(shì),利用信號(hào)檢測(cè)電路監(jiān)測(cè)感應(yīng)電動(dòng)勢(shì)的大小,*后根據(jù)相應(yīng)關(guān)系計(jì)算出液體的流量,系統(tǒng)硬件框圖如圖 1 所示。
2.1 高頻勵(lì)磁電路設(shè)計(jì)
高頻勵(lì)磁電路主要由高低壓切換恒流控制電路和H 橋勵(lì)磁開(kāi)關(guān)電路組成。其中高低壓切換恒流控制電路確保高壓或低壓情況,都可以通過(guò) H 橋向勵(lì)磁線圈提供恒定的電流。電路原理圖如圖 2所示。
如圖2 所示,在對(duì)傳感器線圈進(jìn)行勵(lì)磁時(shí),通過(guò)比較器控制切換開(kāi)關(guān)切換高低壓進(jìn)行勵(lì)磁。V ref 作為比較器的基準(zhǔn)輸入端,其表示勵(lì)磁電流的電壓穩(wěn)態(tài)值;而 C ur 則表示 H 橋勵(lì)磁電路中檢測(cè)到的電壓信號(hào)。一開(kāi)始當(dāng)系統(tǒng)處于低壓勵(lì)磁狀態(tài)時(shí),系統(tǒng)會(huì)自動(dòng)斷開(kāi)切換電路中的電流旁路,此時(shí)系統(tǒng)通過(guò)利用 H 橋向勵(lì)磁線圈提供恒定電流。當(dāng)勵(lì)磁方向變化時(shí),電流檢測(cè)電路就會(huì)檢測(cè)到電流變?yōu)樨?fù)方向,比較器的 C ur 端與V ref 端的平衡就會(huì)發(fā)生變化,此時(shí)系統(tǒng)通過(guò)比較器自動(dòng)切換為高壓勵(lì)磁狀態(tài)。與低壓勵(lì)磁方式相反,在此種狀態(tài)下,恒流控制電路關(guān)閉而電流旁路打開(kāi),線圈中的能量就會(huì)存儲(chǔ)在能量回饋電路中,此時(shí) C 1 端的電壓會(huì)超過(guò)高壓源。等勵(lì)磁線圈中的能量釋放完后,電流逐漸降為零,此時(shí)能量回饋電路就會(huì)利用電流旁路和 H 橋?qū)⒛芰糠答伣o勵(lì)磁線圈。當(dāng)電容 C 1 端的電壓下降到小于高壓源時(shí),系統(tǒng)就會(huì)自動(dòng)通過(guò)電流旁路和H 橋直接對(duì)勵(lì)磁線圈進(jìn)行勵(lì)磁,當(dāng)勵(lì)磁線圈中的電流超過(guò)設(shè)定閾值時(shí),C ur 端電壓就會(huì)大于 V ref 點(diǎn)電壓,此時(shí)比較器又會(huì)切換成低壓勵(lì)磁方式,如此反復(fù)循環(huán)控制,達(dá)到對(duì)勵(lì)磁線圈恒流控制的目的。圖 3 為 H 橋勵(lì)磁控制電路。
由圖 3 可知,I o 為高低壓切換恒流控制電路輸出的恒流源電流,H 橋驅(qū)動(dòng)的 COM1 端控制三*管 Q 1和場(chǎng)效應(yīng)管 Q 4 的通斷;COM2 端控制三*管 Q 2 和場(chǎng)效應(yīng)管 Q 3 的通斷。L 1 表示的是勵(lì)磁線圈(傳感器中線圈),COM1、COM2 為正交的 PWM 波信號(hào),因此在勵(lì)磁線圈 L 1 的兩端會(huì)產(chǎn)生方波勵(lì)磁信號(hào)。檢流電路主要是用來(lái)檢測(cè)勵(lì)磁線圈中電流的變化,當(dāng)線圈中的勵(lì)磁電流方向變化時(shí),可以及時(shí)將此信息反饋給高低壓切換恒流控制電路中的比較器,從而實(shí)現(xiàn)切換高低壓源達(dá)到恒流控制的目的。
2.2 信號(hào)調(diào)理電路
由于傳感器線圈輸出的電動(dòng)勢(shì)信號(hào)非常微弱,干擾成分復(fù)雜,信號(hào)幅值受磁場(chǎng)變動(dòng)影響較大,不能滿足 ADC 采用的要求,因此需要對(duì)此信號(hào)進(jìn)行調(diào)理。
信號(hào)調(diào)理電路原理圖如圖 4 所示。
如圖4 所示,信號(hào)調(diào)理電路由前置放大電路、濾波電路以及二次放大電路組成。其中前置放大電路主要是由 AD8610 組成的差分放大電路構(gòu)成,其主要是去除信號(hào)中的共模干擾并且進(jìn)行*一次前置放大,前置放大電路的放大倍數(shù)為 15。由于有效信號(hào)的幅值很小,經(jīng)過(guò)前置放大電路后信號(hào)中還存在很多高頻雜波,這些雜波會(huì)影響對(duì)后級(jí)信號(hào)的處理,因此還需要對(duì)前置放大電路輸出的信號(hào)進(jìn)行低通濾波和二次放大。系統(tǒng)選用二階有源低通濾波電路濾除信號(hào)中的高頻干擾,低通濾波的截止頻率設(shè)定在 6 kHz 左右,選用 AD817 組成的二次放大電路對(duì)濾波電路輸出的信號(hào)進(jìn)行二次放大,將信號(hào)調(diào)理電路輸出的信號(hào)調(diào)整在 0~5 V 之間,*終利用 DSP 內(nèi)部的 AD 轉(zhuǎn)換器對(duì)此信號(hào)進(jìn)行模數(shù)轉(zhuǎn)換得出傳感器線圈輸出的感應(yīng)電動(dòng)勢(shì),從而根據(jù)相關(guān)的公式計(jì)算得出管道中液體的流量。具體電路圖如圖 5 所示。
2.3 通信電路
管道流量計(jì)輸出的流量值可以通過(guò)外接的 TFTLCD 屏直接顯示,還可以通過(guò)預(yù)留的 RS485 通信接口將數(shù)據(jù)發(fā)送到上位機(jī)中。RS485 電路*大的優(yōu)點(diǎn)是 485 電平與 TTL 電平兼容,方便與 TTL 電路相連;抗共模干擾能力強(qiáng);數(shù)據(jù)傳輸速度快,高達(dá) 10 Mbps;通信距離遠(yuǎn),*大為 1.2 km。系統(tǒng)采用 SP3485 芯片進(jìn)行數(shù)據(jù)通信,SP3485 是一款低功耗芯片且符合RS485 協(xié)議的收發(fā)器,電路圖如圖 6 所示。
3 軟件設(shè)計(jì)
軟件流程圖如圖7 所示。軟件采用模塊化的設(shè)計(jì)方法,主要設(shè)計(jì)了勵(lì)磁控制切換程序、PWM 波產(chǎn)生程序、A/D 轉(zhuǎn)換程序以及 RS485 通信程序等。系統(tǒng)上電后*先執(zhí)行復(fù)位操作,利用 DSP 內(nèi)部的定時(shí)器產(chǎn)生PWM 波控制 H 橋電路中的勵(lì)磁方式,當(dāng)系統(tǒng)檢測(cè)到傳感器線圈輸出的感應(yīng)電動(dòng)勢(shì)后,利用 DSP 內(nèi)部的 12位 A/D 轉(zhuǎn)換器對(duì)此信號(hào)進(jìn)行模數(shù)轉(zhuǎn)換,*后根據(jù)相應(yīng)算法計(jì)算出管道中被測(cè)液體的流量。
4 實(shí)驗(yàn)數(shù)據(jù)分析
實(shí)驗(yàn)中使用管道的管徑為標(biāo)準(zhǔn) 50 mm,連續(xù)檢測(cè)管道中同一點(diǎn)的流量,每 10 min 記錄一次數(shù)據(jù),對(duì)比數(shù)據(jù)的差異,以此來(lái)判定系統(tǒng)測(cè)量的穩(wěn)定性。*先對(duì)管道中的流量進(jìn)行標(biāo)定,利用標(biāo)準(zhǔn)流量計(jì)進(jìn)行檢測(cè),通過(guò)改變閥門開(kāi)度來(lái)調(diào)整管道中液體流量,流量標(biāo)定為 1 m/s,此時(shí)啟動(dòng)系統(tǒng)開(kāi)始檢測(cè),數(shù)據(jù)如表 1 所示。
由表 1 測(cè)量數(shù)據(jù)可知,當(dāng)管道中液體的流速恒定時(shí),系統(tǒng)在同一點(diǎn)檢測(cè)到的流量基本一致,誤差在 4%內(nèi),由此可見(jiàn)系統(tǒng)具有良好的穩(wěn)定性,符合設(shè)計(jì)預(yù)期。在驗(yàn)證完系統(tǒng)的穩(wěn)定性之后,進(jìn)一步檢驗(yàn)系統(tǒng)測(cè)量的準(zhǔn)確性。通過(guò)閥門改變管道中待測(cè)液體的流速,將標(biāo)準(zhǔn)流量計(jì)檢測(cè)到的流速與被測(cè)管道流量計(jì)測(cè)量的流速進(jìn)行比較,實(shí)驗(yàn)測(cè)量數(shù)據(jù)如表 2 所示。
由表 2 測(cè)量數(shù)據(jù)可知,系統(tǒng)在測(cè)量低流速液體時(shí)(流速小于 1 m/s)誤差較大,達(dá)到 5%,當(dāng)待測(cè)液體的流速增大時(shí)(大于 1.4 m/s),誤差逐漸減小,基本維持在 3%以內(nèi)。由此可見(jiàn)系統(tǒng)具有較高的檢測(cè)精度,尤其是當(dāng)管道中的液體流速較高時(shí),系統(tǒng)的檢測(cè)誤差不超過(guò) 3%,達(dá)到了設(shè)計(jì)預(yù)期。
5 結(jié)束語(yǔ)
文中采用了基于能量回饋和電流旁路的高低壓勵(lì)磁控制方案,通過(guò)高低壓切換勵(lì)磁的方式來(lái)實(shí)現(xiàn)對(duì)勵(lì)磁過(guò)程中恒流的控制,從而使得系統(tǒng)穩(wěn)定可靠運(yùn)行。MCU采用高性能數(shù)字處理器 DSP TMS320F28335,提高了系統(tǒng)的采樣精度以及算法處理的速度。在測(cè)量數(shù)據(jù)顯示方面,利用 TFT LCD 屏直接顯示測(cè)量結(jié)果,也可以將測(cè)量數(shù)據(jù)通過(guò) RS485 接口發(fā)送到上位機(jī)中。實(shí)際測(cè)試結(jié)果表明,系統(tǒng)具有良好的穩(wěn)定性,且測(cè)量精度較高,誤差不超過(guò) 5%。
24v管道流量計(jì)接線圖
管道流量計(jì)量表安裝規(guī)范
管道流量計(jì)量表接線圖
管道流量計(jì)的用途
管道流量計(jì)的精度要求
管道流量計(jì)零點(diǎn)修正亂跳
管道流量計(jì)的選用
管道流量計(jì)無(wú)流量
管道流量計(jì)安裝前后距離要求
管道流量計(jì)怎么看流量
管道流量計(jì)正確安裝方法
管道流量計(jì)的優(yōu)缺點(diǎn)
管道流量計(jì)的零點(diǎn)標(biāo)定
管道流量計(jì)技術(shù)參數(shù)要求
管道流量計(jì)誤差范圍
管道流量計(jì)材質(zhì)的選用
管道流量計(jì)清洗維護(hù)
管道流量計(jì)不穩(wěn)定怎么解決
管道流量計(jì)接線方法
管道流量計(jì)的檢驗(yàn)周期及檢驗(yàn)要求
管道流量計(jì)刻度怎么看
管道流量計(jì)4根線怎么接
管道流量計(jì)讀數(shù)變小原因分析
管道流量計(jì)如何設(shè)置
管道流量計(jì)小流量如何切除
管道流量計(jì)計(jì)量不準(zhǔn)是什么原因
管道流量計(jì)如何調(diào)整
工業(yè)管道流量計(jì)安裝說(shuō)明
尾礦管道流量計(jì)實(shí)際接線圖
dn700管道流量計(jì)如何選型
引言
流量檢測(cè)在工業(yè)生產(chǎn)、廢液監(jiān)測(cè)以及管道運(yùn)輸?shù)阮I(lǐng)域有著廣泛的應(yīng)用,根據(jù)測(cè)量原理不同,流量計(jì)可以大致分為力學(xué)、電學(xué)、聲學(xué)、熱學(xué)、光學(xué)等類型,其中管道流量計(jì)是依據(jù)電學(xué)原理研制而成,管道流量計(jì)與其他流量計(jì)相比,具有結(jié)構(gòu)簡(jiǎn)單、測(cè)量精度高、穩(wěn)定性好等特點(diǎn)。但管道流量計(jì)在測(cè)量低流速、低導(dǎo)電率液體時(shí)存在精度不高等缺點(diǎn),為了克服這個(gè)缺點(diǎn),本文研制了一種基于 DSP 的高頻勵(lì)磁管道流量計(jì),在勵(lì)磁方式上選用旁路勵(lì)磁電路與恒流控制電路相結(jié)合的方式,提高了勵(lì)磁頻率以及能量的利用效率。本文選用高性能 DSP TMS320F28335 來(lái)采集處理傳感器輸出的信號(hào),顯著提高了系統(tǒng)測(cè)量時(shí)的響應(yīng)速度,將流量計(jì)算結(jié)果通過(guò) LCD 屏的方式實(shí)時(shí)顯示,系統(tǒng)具有體積小、便攜式以及測(cè)量精度高等優(yōu)點(diǎn)。
1 高頻勵(lì)磁管道流量計(jì)測(cè)量原理
管道流量計(jì)根據(jù)電磁感應(yīng)定律的原理來(lái)測(cè)量導(dǎo)電液體的流量,測(cè)量導(dǎo)電液體的傳感器中繞有線圈,通過(guò)給線圈通電,當(dāng)液體流過(guò)線圈時(shí)就會(huì)切割磁感線,此時(shí)在線圈的兩端會(huì)產(chǎn)生感應(yīng)電動(dòng)勢(shì) e,根據(jù)電磁學(xué)中右手法則可得:
e=BLv (1)
式中:B 為傳感器線圈產(chǎn)生的磁場(chǎng)強(qiáng)度;L 為傳感器線圈的長(zhǎng)度;v 為液體在傳感器中流動(dòng)的速度。
由流量計(jì)算公式可得:
式中 S 為傳感器管道的截面積。由式(1)可知,當(dāng) B 和 L 已知時(shí),只要測(cè)得 e 就可以反推出 v;由式(2)可知,當(dāng)測(cè)得 v 時(shí)就能計(jì)算出 Q。
2 高頻勵(lì)磁管道流量計(jì)硬件設(shè)計(jì)
高頻勵(lì)磁管道流量計(jì)由傳感器、高頻勵(lì)磁電路、信號(hào)處理電路等組成,其中高頻勵(lì)磁電路決定著傳感器磁場(chǎng)的強(qiáng)弱,勵(lì)磁電路的穩(wěn)定性以及精確性決定著系統(tǒng)檢測(cè)的準(zhǔn)確性以及穩(wěn)定性。DSP 系統(tǒng)控制勵(lì)磁電路激勵(lì)傳感器線圈,當(dāng)線圈中有導(dǎo)電液體流過(guò)時(shí),其切割磁感線并在傳感器兩端的線圈上產(chǎn)生感應(yīng)電動(dòng)勢(shì),利用信號(hào)檢測(cè)電路監(jiān)測(cè)感應(yīng)電動(dòng)勢(shì)的大小,*后根據(jù)相應(yīng)關(guān)系計(jì)算出液體的流量,系統(tǒng)硬件框圖如圖 1 所示。
2.1 高頻勵(lì)磁電路設(shè)計(jì)
高頻勵(lì)磁電路主要由高低壓切換恒流控制電路和H 橋勵(lì)磁開(kāi)關(guān)電路組成。其中高低壓切換恒流控制電路確保高壓或低壓情況,都可以通過(guò) H 橋向勵(lì)磁線圈提供恒定的電流。電路原理圖如圖 2所示。
如圖2 所示,在對(duì)傳感器線圈進(jìn)行勵(lì)磁時(shí),通過(guò)比較器控制切換開(kāi)關(guān)切換高低壓進(jìn)行勵(lì)磁。V ref 作為比較器的基準(zhǔn)輸入端,其表示勵(lì)磁電流的電壓穩(wěn)態(tài)值;而 C ur 則表示 H 橋勵(lì)磁電路中檢測(cè)到的電壓信號(hào)。一開(kāi)始當(dāng)系統(tǒng)處于低壓勵(lì)磁狀態(tài)時(shí),系統(tǒng)會(huì)自動(dòng)斷開(kāi)切換電路中的電流旁路,此時(shí)系統(tǒng)通過(guò)利用 H 橋向勵(lì)磁線圈提供恒定電流。當(dāng)勵(lì)磁方向變化時(shí),電流檢測(cè)電路就會(huì)檢測(cè)到電流變?yōu)樨?fù)方向,比較器的 C ur 端與V ref 端的平衡就會(huì)發(fā)生變化,此時(shí)系統(tǒng)通過(guò)比較器自動(dòng)切換為高壓勵(lì)磁狀態(tài)。與低壓勵(lì)磁方式相反,在此種狀態(tài)下,恒流控制電路關(guān)閉而電流旁路打開(kāi),線圈中的能量就會(huì)存儲(chǔ)在能量回饋電路中,此時(shí) C 1 端的電壓會(huì)超過(guò)高壓源。等勵(lì)磁線圈中的能量釋放完后,電流逐漸降為零,此時(shí)能量回饋電路就會(huì)利用電流旁路和 H 橋?qū)⒛芰糠答伣o勵(lì)磁線圈。當(dāng)電容 C 1 端的電壓下降到小于高壓源時(shí),系統(tǒng)就會(huì)自動(dòng)通過(guò)電流旁路和H 橋直接對(duì)勵(lì)磁線圈進(jìn)行勵(lì)磁,當(dāng)勵(lì)磁線圈中的電流超過(guò)設(shè)定閾值時(shí),C ur 端電壓就會(huì)大于 V ref 點(diǎn)電壓,此時(shí)比較器又會(huì)切換成低壓勵(lì)磁方式,如此反復(fù)循環(huán)控制,達(dá)到對(duì)勵(lì)磁線圈恒流控制的目的。圖 3 為 H 橋勵(lì)磁控制電路。
由圖 3 可知,I o 為高低壓切換恒流控制電路輸出的恒流源電流,H 橋驅(qū)動(dòng)的 COM1 端控制三*管 Q 1和場(chǎng)效應(yīng)管 Q 4 的通斷;COM2 端控制三*管 Q 2 和場(chǎng)效應(yīng)管 Q 3 的通斷。L 1 表示的是勵(lì)磁線圈(傳感器中線圈),COM1、COM2 為正交的 PWM 波信號(hào),因此在勵(lì)磁線圈 L 1 的兩端會(huì)產(chǎn)生方波勵(lì)磁信號(hào)。檢流電路主要是用來(lái)檢測(cè)勵(lì)磁線圈中電流的變化,當(dāng)線圈中的勵(lì)磁電流方向變化時(shí),可以及時(shí)將此信息反饋給高低壓切換恒流控制電路中的比較器,從而實(shí)現(xiàn)切換高低壓源達(dá)到恒流控制的目的。
2.2 信號(hào)調(diào)理電路
由于傳感器線圈輸出的電動(dòng)勢(shì)信號(hào)非常微弱,干擾成分復(fù)雜,信號(hào)幅值受磁場(chǎng)變動(dòng)影響較大,不能滿足 ADC 采用的要求,因此需要對(duì)此信號(hào)進(jìn)行調(diào)理。
信號(hào)調(diào)理電路原理圖如圖 4 所示。
如圖4 所示,信號(hào)調(diào)理電路由前置放大電路、濾波電路以及二次放大電路組成。其中前置放大電路主要是由 AD8610 組成的差分放大電路構(gòu)成,其主要是去除信號(hào)中的共模干擾并且進(jìn)行*一次前置放大,前置放大電路的放大倍數(shù)為 15。由于有效信號(hào)的幅值很小,經(jīng)過(guò)前置放大電路后信號(hào)中還存在很多高頻雜波,這些雜波會(huì)影響對(duì)后級(jí)信號(hào)的處理,因此還需要對(duì)前置放大電路輸出的信號(hào)進(jìn)行低通濾波和二次放大。系統(tǒng)選用二階有源低通濾波電路濾除信號(hào)中的高頻干擾,低通濾波的截止頻率設(shè)定在 6 kHz 左右,選用 AD817 組成的二次放大電路對(duì)濾波電路輸出的信號(hào)進(jìn)行二次放大,將信號(hào)調(diào)理電路輸出的信號(hào)調(diào)整在 0~5 V 之間,*終利用 DSP 內(nèi)部的 AD 轉(zhuǎn)換器對(duì)此信號(hào)進(jìn)行模數(shù)轉(zhuǎn)換得出傳感器線圈輸出的感應(yīng)電動(dòng)勢(shì),從而根據(jù)相關(guān)的公式計(jì)算得出管道中液體的流量。具體電路圖如圖 5 所示。
2.3 通信電路
管道流量計(jì)輸出的流量值可以通過(guò)外接的 TFTLCD 屏直接顯示,還可以通過(guò)預(yù)留的 RS485 通信接口將數(shù)據(jù)發(fā)送到上位機(jī)中。RS485 電路*大的優(yōu)點(diǎn)是 485 電平與 TTL 電平兼容,方便與 TTL 電路相連;抗共模干擾能力強(qiáng);數(shù)據(jù)傳輸速度快,高達(dá) 10 Mbps;通信距離遠(yuǎn),*大為 1.2 km。系統(tǒng)采用 SP3485 芯片進(jìn)行數(shù)據(jù)通信,SP3485 是一款低功耗芯片且符合RS485 協(xié)議的收發(fā)器,電路圖如圖 6 所示。
3 軟件設(shè)計(jì)
軟件流程圖如圖7 所示。軟件采用模塊化的設(shè)計(jì)方法,主要設(shè)計(jì)了勵(lì)磁控制切換程序、PWM 波產(chǎn)生程序、A/D 轉(zhuǎn)換程序以及 RS485 通信程序等。系統(tǒng)上電后*先執(zhí)行復(fù)位操作,利用 DSP 內(nèi)部的定時(shí)器產(chǎn)生PWM 波控制 H 橋電路中的勵(lì)磁方式,當(dāng)系統(tǒng)檢測(cè)到傳感器線圈輸出的感應(yīng)電動(dòng)勢(shì)后,利用 DSP 內(nèi)部的 12位 A/D 轉(zhuǎn)換器對(duì)此信號(hào)進(jìn)行模數(shù)轉(zhuǎn)換,*后根據(jù)相應(yīng)算法計(jì)算出管道中被測(cè)液體的流量。
4 實(shí)驗(yàn)數(shù)據(jù)分析
實(shí)驗(yàn)中使用管道的管徑為標(biāo)準(zhǔn) 50 mm,連續(xù)檢測(cè)管道中同一點(diǎn)的流量,每 10 min 記錄一次數(shù)據(jù),對(duì)比數(shù)據(jù)的差異,以此來(lái)判定系統(tǒng)測(cè)量的穩(wěn)定性。*先對(duì)管道中的流量進(jìn)行標(biāo)定,利用標(biāo)準(zhǔn)流量計(jì)進(jìn)行檢測(cè),通過(guò)改變閥門開(kāi)度來(lái)調(diào)整管道中液體流量,流量標(biāo)定為 1 m/s,此時(shí)啟動(dòng)系統(tǒng)開(kāi)始檢測(cè),數(shù)據(jù)如表 1 所示。
由表 1 測(cè)量數(shù)據(jù)可知,當(dāng)管道中液體的流速恒定時(shí),系統(tǒng)在同一點(diǎn)檢測(cè)到的流量基本一致,誤差在 4%內(nèi),由此可見(jiàn)系統(tǒng)具有良好的穩(wěn)定性,符合設(shè)計(jì)預(yù)期。在驗(yàn)證完系統(tǒng)的穩(wěn)定性之后,進(jìn)一步檢驗(yàn)系統(tǒng)測(cè)量的準(zhǔn)確性。通過(guò)閥門改變管道中待測(cè)液體的流速,將標(biāo)準(zhǔn)流量計(jì)檢測(cè)到的流速與被測(cè)管道流量計(jì)測(cè)量的流速進(jìn)行比較,實(shí)驗(yàn)測(cè)量數(shù)據(jù)如表 2 所示。
由表 2 測(cè)量數(shù)據(jù)可知,系統(tǒng)在測(cè)量低流速液體時(shí)(流速小于 1 m/s)誤差較大,達(dá)到 5%,當(dāng)待測(cè)液體的流速增大時(shí)(大于 1.4 m/s),誤差逐漸減小,基本維持在 3%以內(nèi)。由此可見(jiàn)系統(tǒng)具有較高的檢測(cè)精度,尤其是當(dāng)管道中的液體流速較高時(shí),系統(tǒng)的檢測(cè)誤差不超過(guò) 3%,達(dá)到了設(shè)計(jì)預(yù)期。
5 結(jié)束語(yǔ)
文中采用了基于能量回饋和電流旁路的高低壓勵(lì)磁控制方案,通過(guò)高低壓切換勵(lì)磁的方式來(lái)實(shí)現(xiàn)對(duì)勵(lì)磁過(guò)程中恒流的控制,從而使得系統(tǒng)穩(wěn)定可靠運(yùn)行。MCU采用高性能數(shù)字處理器 DSP TMS320F28335,提高了系統(tǒng)的采樣精度以及算法處理的速度。在測(cè)量數(shù)據(jù)顯示方面,利用 TFT LCD 屏直接顯示測(cè)量結(jié)果,也可以將測(cè)量數(shù)據(jù)通過(guò) RS485 接口發(fā)送到上位機(jī)中。實(shí)際測(cè)試結(jié)果表明,系統(tǒng)具有良好的穩(wěn)定性,且測(cè)量精度較高,誤差不超過(guò) 5%。
上一篇:dn150污水流量計(jì)傳感器檢測(cè)原理及權(quán)函數(shù)仿真與分析
下一篇:關(guān)于管道式流量計(jì)適用范圍說(shuō)明與在線校準(zhǔn)規(guī)范解讀